THE STRUCTURE OF $(1-2: 5-6-\eta$ -CYCLOOCTA-1,5-DIENE)– $(\eta^5 - CYCLOPENTADIENYL)$ COBALT(I)

Jan ONDRÁČEK^a, Volker Schehlmann^b, Jaroslav Maixner^c and Bohumil KRATOCHVÍL^a

 ^a Department of Solid State Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6, Czechoslovakia
^b Institute of Organic Chemistry, University of Heidelberg, INF 270, 6900 Heidelberg, F.R.G.
^c Central Laboratories of Prague Institute of Chemical Technology, 166 28 Prague 6, Czechoslovakia

> Received February 12, 1990 Accepted April 3, 1990

The structure of the title complex, $C_{13}H_{17}Co(232\cdot2)$, was determined by the heavy-atom method and anisotropically refined to the value R = 0.029 for 1 558 observed reflections $(I > 1.96\sigma(I))$. The substance crystallizes in the monoclinic space group $P2_1/c$; $a = 12\cdot6744(6)$, $b = 7\cdot3887(5)$, $c = 11\cdot4519(8)$ Å, $\beta = 102\cdot91(1)^\circ$, Z = 4. The molecule has the sandwich-arrangement, in which cycloocta-1,5-diene ring assumes the boat conformation. The bond distances to the Co atom, in the range of $2\cdot010-2\cdot025$ Å, are short. The relatively strong interactions of the π -orbitals of the diolefin with the cyclopentadienyl-Co fragment is manifested in the elongation of the C = C bonds (1.411 and 1.412 Å).

Although some cpCo-diolefin (cp means cyclopentadienyl) complexes are described in the literature, to our best knowledge no crystallographic data are published for a cpCo complex with an coordinated unconjugated diolefin. Concerning the remarkable stability and usefulness of [Co(cp)(cod)] (cod means cycloocta-1,5-diene) as a homogenous catalyst for oligomerization of acetylenes at higher temperatures in the absence of carbon monoxide, the structure of the title compound is reported now.

EXPERIMENTAL

Preparation of Compound Studied

To obtain [Co(cp)(cod)] in good yield from commercially available $[Co(cp)(CO)_2]$ a method described by King, Treichel and Stone¹ was modified. To a degassed solution of 15 g (142 mmol) of cycloocta-1,5-diene in 100 ml decalin was added 3 g (16.7 mmol) of $[Co(cp)(CO)_2]$. Under a slow argon stream the solution was stirred 60 h at 145°C. Afterwards the volatile compounds of the reaction mixture were removed under reduced pressure. The dark orange residue crystal-

lized and after sublimation 2.75 g (11.8 mmol) of analytically pure [Co(cp)(cod)] was isolated (71% yield). The density was measured by the flotation method.

Crystal Structure Determination

Monoclinic, space group $P2_1/c$, a = 12.6744(6), b = 7.3887(5), c = 11.4519(8) Å, $\beta = 102.91(1)^\circ$, V = 1.045.3(1) Å³, Z = 4, $\rho_c = 1.476$ Mg m⁻³, λ (MoK_{α}) = 0.71073 Å, $\mu = 1.59$ mm⁻¹, F(000) = 488.

The single crystal with the dimensions $0.20 \times 0.35 \times 0.40$ mm was measured on an Enraf--Nonius CAD4 diffractometer at 23°C. Graphite-monochromated MoK, radiation was employed. The lattice parameters were refined from the positions of 25 centred reflections (38° < $2\Theta < 40^{\circ}$). A total of 8 054 intensities were measured in the range $h: -20 \rightarrow 20, k: -12 \rightarrow 12, k: -12 \rightarrow 12$ $l: 0 \rightarrow 14$. During the data collection ($\omega/2\theta$ mode, $2\theta < 50^{\circ}$) three intensity-control reflections (-100-4, -101-2, -74-8) monitored after every 200 reflections showed no significant fluctuation. After averaging of the equivalent reflections only 1 558 intensities were considered as observed on the basis of the $I > 1.96\sigma(I)$ condition. The phase problem was solved using the heavy-atom method, H-atom positions were calculated from the expected ideal geometry and isotropically refined. The structure was refined by minimizing of $\sum w(|F_{\alpha}| - |F_{\alpha}|)^2$ using the block-diagonal least-squares procedure. A total of 195 parameters were refined in two blocks. In the last refinement cycle the maximal value of (Δ/σ) was 0.002 and the wieghting scheme had the $w = [\sigma^2(F_0) + 0.0009F_0^2]^{-1}$ form. Refinement yielded the R = 0.029, wR = 0.026, S = 0.026= 1.034 values for 1 558 observed intensities, absorption and extinction effects were neglected. The maximum and minimum heights in the final $\Delta \rho$ map were 0.24 and $-0.62 \text{ e} \text{ Å}^{-3}$. Atomic scattering factors for neutral atoms were taken from literature². The following crystallographic programs were employed: SDP (ref.³), SHELX-76 (ref.⁴), PARST (ref.⁵). Calculations were carried out on PDP 11/73 and EC 1033 computers.

RESULTS AND DISCUSSION

The molecular structure of [Co(cp)(cod)] with the numbering of atoms is illustrated in Fig. 1. Final atomic coordinates for non-hydrogen atoms and their equivalent isotropic thermal parametrs are listed in Table I*. Bond lengths and angles are given in Table II.

For the discussion of the geometric arrangement it might be useful to compare the data obtained with already known bond angles and lengths of similar $[M(cod)L_n]$ complexes. Regarding the arrangement of two coordinated carbocyclic π -systems no unusual features are obvious. The atoms of the cp cycle (C9, C10, C11, C12, and C13) are situated nearly in one plane with a maximum deviation of -0.011(3) Å for C13. Cycloocta-1,5-diene adopts the expected boat conformation. The displacements of the C3, C4, C7 and C8 atoms from the C1, C2, C5 and C6 plane are 1.228(3) Å, 0.952(3) Å, 1.220(3) Å and 0.974(3) Å, respectively. The dihedral angle between the C1, C2, C5, C6 plane and the plane of the cp cycle is 178.7(1)°.

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom positions, bond distances and angles involving H atoms and least-squares plane details are available on request from the author (B.K.).

bond distances to the cobalt, in the range of $2 \cdot 010 - 2 \cdot 025$ Å, are relatively short. Compared, for example to $[Fe(cod)(CO)_3]$ (ref.⁶,) where the olefin-metal distance lies between $2 \cdot 16$ and $2 \cdot 18$ Å, the force constant of the Co-olefin bond must be stronger. In $[Ni(cod)_2]$ the analogous bond length is $2 \cdot 11$ Å (ref.⁷), also clearly longer than in [Co(cp)(cod)]. The situation is a somewhat different in the paramagnetic 17electron species [Fe(cp)(cod)] (ref.⁸), where the Fe atom tries to satisfy its electron deficiency by shortening the corresponding bond lengths, so that a metal-olefin distances of about $2 \cdot 04$ Å results.

The relatively strong interaction of the π -orbitals of the diolefin with the cpCo--fragment can also be verified by looking at the elongation of the C==C bond. The value for this bond length is 1.334 Å in the uncoordinated cycloocta-1,5-diene⁹ and 1.411 and 1.412 Å respectively, in [(Co(cp)(cod)]. The analogous distances in [Ni(cod)₂] are between 1.38 and 1.39 Å, and 1.37 Å in [Fe(cod)(CO)₃]. The bond angles are quite normal and are more similar to those found in [Fe(cp)(cod)] than to those in [Ni(cod)₂].

An examination of intermolecular distances between non-hydrogen atoms shows that the crystal is stabilized by van der Waals interactions only (Fig. 2); the shortest distances are C10 $-C13^{i} = 3.578(4)$ Å and C10 $-C1^{ii} = 3.578(3)$ Å, where i: 1 - x, y - 1/2, 1/2 - z and ii: x, y - 1, z.

FIG. 2

Fig. 1

View of the [Co(cp)(cod)] molecule with atom numbering. The displacement ellipsoids are drawn at the 50% probability level The crystal packing projected into the XZ plane

TABLE I

 Atom	X	у	Z	$U_{\rm eq}, {\rm \AA}^2$	
Со	2 898.6(2)	3 206.4(4)	2 943·4(2)	264(2)	
C 1	2 979(2)	5 866(3)	3 328(2)	376(13)	
C 2	2 497(2)	5 595(3)	2 105(2)	377(13)	
C3	1 292(2)	5 825(4)	1 602(3)	516(16)	
C4	697(2)	4 048(4)	1 614(3)	489(15)	
C5	1 292(2)	2 777(4)	2 55 5(3)	399(14)	
C 6	1 650(2)	3 212(3)	3 780(3)	398(14)	
C 7	1 454(2)	5 049(4)	4 297(2)	491(16)	
C 8	2 361(3)	6 377(4)	4 256(3)	489(16)	
C9	3 680(2)	1 665(3)	1 853(3)	402(15)	
C10	3 287(2)	533(3)	2 639(2)	423(14)	
C11	3 792(2)	1 006(4)	3 832(3)	510(16)	
C12	4 484(2)	2 439(5)	3 783(3)	551(17)	
C13	4 400(2)	2 871(4)	2 553(3)	478(16)	

The final coordinates for non-hydrogen atoms $(.10^4)$ and their isotropic equivalent displacement parameters $(.10^4)$ defined as $U_{eq} = (1/3) [U_{22} + 1/\sin^2 \beta (U_{11} + U_{33} + 2U_{13} \cos \beta)]$

TABLE II

Interatomic distances (in Å) and angles (in °)

Atoms	Value	Atoms	Value
	Dista	nces	
Co-C1	2.011(2)	C3C4	1.516(4)
CoC2	2.020(2)	C4C5	1.500(4)
CoC5	2.010(2)	C5C6	1.411(4)
CoC6	2.025(3)	C6C7	1.524(4)
Со—С9	2.095(3)	C7C8	1.521(4)
CoC10	2.084(3)	C1C8	1.504(5)
Co-C11	2.109(3)	C9—C10	1.399(4)
CoC12	2.102(3)	C10C11	1.417(4)
Co-C13	2.064(3)	C11-C12	1.384(4)
C1C2	1.412(4)	C12C13	1.425(5)
C2C3	1.516(4)	C9C13	1.394(4)

2450

$(1-2:5-6-\eta$ -Cycloocta-1,5-diene)- $(\eta^5$ -cyclopentadienyl)cobalt(I)

TABLE II

(Continued)

Angles

C6C0C5	40.9(1)	C9-Co-C11	66.0(1)
C1C0C5	101.7(1)	C9C12	66·1(1)
C1C0C6	84-4(1)	C9-Co-C13	39.2(1)
C2C0C5	84.1(1)	CoC9C10	70.0(2)
C2-CoC6	94.7(1)	CoC9C13	69·2(2)
C2-Co-C1	41·0(1)	C13-C9-C10	107.1(2)
C10-Co-C5	94.5(1)	Co-C13-C9	71.6(2)
C10C0C6	108.7(1)	C9-C13-C12	108.7(3)
C10-Co-C1	163.8(1)	CoC13C3	71.4(2)
C10-Co-C2	142.5(1)	CoC12C13	68.6(2)
C11-Co-C5	113.2(1)	C13C12C11	107.6(3)
C11-Co-C6	99 ·5(1)	Co-C12-C11	71.1(2)
C11-Co-C1	130.7(1)	Co-C11-C12	70.6(2)
C11-Co-C2	162.7(1)	C12C11C10	107.7(3)
C11CoC10	39.5(1)	CoC12C10	69.3(2)
C12-CoC5	151.2(2)	C9-C10-C11	108.9(2)
C12-Co-C6	123.5(1)	Co-C10-C11	71.2(2)
C12-Co-C1	99·6(1)	Co-C10-C9	70.9(1)
C12-Co-C2	124.5(1)	Co-C2-C3	113.8(2)
C12C0C10	65.4(1)	CoC1	69·2(1)
C12-Co-C11	38.4(1)	C1C3	122.5(2)
C13C0C5	150.5(1)	Co-C1-C2	69·8(1)
C13-Co-C6	163-4(1)	C2C8	124.0(3)
C13C0C1	99.2(1)	CoC1C8	113.0(2)
C13-Co-C2	98.6(1)	C1C8C7	112.2(2)
C13-Co-C10	65.6(1)	C8C6	111.9(2)
C13C0C11	6 5 ·8(1)	CoC6C7	113.5(2)
C13-Co-C12	40.0(1)	C7C5C5	123.0(2)
C9C5	111 ·9 (1)	CoC5	69·0(2)
С9—Со—С6	143.7(1)	CoC5C6	70.1(2)
C9—Co—C1	130.8(1)	C6C5C4	124.8(3)
C9—Co—C2	107.1(1)	CoC3	112.5(2)
C9–Co–C 10	39.1(1)	C5C4C3	122.2(2)
		C2-C3-C4	111.1(2)

REFERENCES

- 1. King R. B., Treichel P. M., Stone F. G. A.: J. Am. Chem. Soc. 83, 3593 (1961).
- 2. International Tables for X-ray Crystallography, Vol. IV. Kynoch Press, Birmingham 1974. (Present distributor Kluwer Academic Publishers, Dordrecht).
- 3. Frenz B. A. and Associated, Inc.: SDP. Structure Determination Package. College Station, Texas 77840 and Enraf-Nonius, Delft 1985.
- 4. Sheldrick G.: SHELX-76. A Program for Crystal Structure Determination. University of Göttingen, Göttingen 1976.
- 5. Nardelli M.: PARST. A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis. University of Parma, Parma 1984.
- 6. Grevels F. H., Jacke J., Klotzbücher W. E., Krüger C., Seevogel K., Tsay Y. H.: Angew. Chem. 99, 960 (1987).
- 7. Dierks H., Dietrich H.: Z. Kristallogr. 122, 1 (1965).
- 8. Angermund K., Claus K. H., Goddard R., Krüger C.: Angew. Chem. 97, 241 (1985).
- 9. Allinger N. L., Sprague J. T.: Tetrahedron 31, 21 (1975).

Translated by the author (B.K.).