THE STRUCTURE OF (1-2:5-6- $\boldsymbol{\eta}$-CYCLOOCTA-1,5-DIENE)-($\boldsymbol{\eta}^{5}-$ -CYCLOPENTADIENYL)COBALT(I)

Jan Ondráček ${ }^{a}$, Volker Schehlmann ${ }^{b}$, Jaroslav Maixner ${ }^{c}$ and Bohumil Kratochvíl ${ }^{a}$
${ }^{a}$ Department of Solid State Chemistry, Prague Institute of Chemical Technolog.v, 16628 Prague 6, Czechoslovakia
${ }^{b}$ Institute of Organic Chemistry, University of Heidelberg, INF 270, 6900 Heidelberg, F.R.G.
${ }^{\text {c }}$ Central Laboratories of Prague Institute of Chemical Technology, 16628 Prague 6, Czechoslovakia

The structure of the title complex, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Co}(232 \cdot 2)$, was determined by the heavy-atom method and anisotropically refined to the value $R=0.029$ for 1558 observed reflections $(I>1.96 \sigma(I))$. The substance crystallizes in the monoclinic space group $P 2_{1} / c$; $a=12 \cdot 6744(6), b=7 \cdot 3887(5)$, $c=11.4519(8) \AA, \beta=102 \cdot 91(1)^{\circ}, Z=4$. The molecule has the sandwich-arrangement, in which cycloocta-1,5-diene ring assumes the boat conformation. The bond distances to the Co atom, in the range of $2 \cdot 010-2.025 \AA$, are short. The relatively strong interactions of the π-orbitals of the diolefin with the cyclopentadienyl-Co fragment is manifested in the elongation of the $C=C$ bonds (1.411 and $1.412 \AA$).

Although some cpCo-diolefin (cp means cyclopentadienyl) complexes are described in the literature, to our best knowledge no crystallographic data are published for a cpCo complex with an coordinated unconjugated diolefin. Concerning the remarkable stability and usefulness of $[\mathrm{Co}(\mathrm{cp})(\operatorname{cod})]$ (cod means cycloocta-1,5-diene) as a homogenous catalyst for oligomerization of acetylenes at higher temperatures in the absence of carbon monoxide, the structure of the title compound is reported now.

EXPERIMENTAL

Preparation of Compound Studied
To obtain $[\mathrm{Co}(\mathrm{cp})(\mathrm{cod})]$ in good yield from commercially available $\left[\mathrm{Co}(\mathrm{cp})(\mathrm{CO})_{2}\right]$ a method described by King, Treichel and Stone ${ }^{1}$ was modified. To a degassed solution of $15 \mathrm{~g}(142 \mathrm{mmol})$ of cycloocta-1,5-diene in 100 ml decalin was added $3 \mathrm{~g}(16.7 \mathrm{mmol})$ of $\left[\mathrm{Co}(\mathrm{cp})(\mathrm{CO})_{2}\right]$. Under a slow argon stream the solution was stirred 60 h at 145 C . Afterwards the volatile compounds of the reaction mixture were removed under reduced pressure. The dark orange residue crystal-
lized and after sublimation $2.75 \mathrm{~g}(11.8 \mathrm{mmol})$ of analytically pure $[\mathrm{Co}(\mathrm{cp})(\mathrm{cod})]$ was isolated (71% yield). The density was measured by the flotation method.

Crystal Structure Determination
Monoclinic, space group $P 2_{1} / c, a=12 \cdot 6744(6), b=7 \cdot 3887(5), c=11 \cdot 4519(8) \AA, \beta=102.91(1)^{\circ}$, $V=1045.3(1) \AA^{3}, \quad Z=4, \quad \varrho_{\mathrm{c}}=1.476 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda\left(\mathrm{MoK}_{\alpha}\right)=0.71073 \AA, \mu=1.59 \mathrm{~mm}^{-1}$, $F(000)=488$.

The single crystal with the dimensions $0.20 \times 0.35 \times 0.40 \mathrm{~mm}$ was measured on an Enraf--Nonius CAD4 diffractometer at $23^{\circ} \mathrm{C}$. Graphite-monochromated MoK_{α} radiation was employed. The lattice parameters were refined from the positions of 25 centred reflections $\left(38^{\circ}<\right.$ $2 \Theta<40^{\circ}$). A total of 8054 intensities were measured in the range $h:-20 \rightarrow 20, k:-12 \rightarrow 12$, $l: 0 \rightarrow 14$. During the data collection ($\omega / 2 \Theta$ mode, $2 \Theta<50^{\circ}$) three intensity-control reflections ($-100-4,-101-2,-74-8$) monitored after every 200 reflections showed no significant fluctuation. After averaging of the equivalent reflections only 1558 intensities were considered as observed on the basis of the $I>1 \cdot 96 \sigma(I)$ condition. The phase problem was solved using the heavy-atom method, H -atom positions were calculated from the expected ideal geometry and isotropically refined. The structure was refined by minimizing of $\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ using the block-diagonal least-squares procedure. A total of 195 parameters were refined in two blocks. In the last refinement cycle the maximal value of (Δ / σ) was 0.002 and the wieghting scheme had the $w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0009 F_{\mathrm{o}}^{2}\right]^{-1}$ form. Refinement yielded the $R=0.029, w R=0.026, S=$ $=1.034$ values for 1558 observed intensities, absorption and extinction effects were neglected. The maximum and minimum heights in the final $\Delta \varrho$ map were 0.24 and $-0.62 \mathrm{e}^{-3}$. Atomic scattering factors for neutral atoms were taken from literature ${ }^{2}$. The following crystallographic programs were employed: SDP (ref. ${ }^{3}$), SHELX-76 (ref. ${ }^{4}$), PARST (ref. ${ }^{5}$). Calculations were carried out on PDP 11/73 and EC 1033 computers.

RESULTS AND DISCUSSION

The molecular structure of $[\mathrm{Co}(\mathrm{cp})(\operatorname{cod})]$ with the numbering of atoms is illustrated in Fig. 1. Final atomic coordinates for non-hydrogen atoms and their equivalent isotropic thermal parametrs are listed in Table I*. Bond lengths and angles are given in Table II.

For the discussion of the geometric arrangement it might be useful to compare the data obtained with already known bond angles and lengths of similar [$\mathrm{M}(\operatorname{cod}) \mathrm{L}_{n}$] complexes. Regarding the arrangement of two coordinated carbocyclic π-systems no unusual features are obvious. The atoms of the cp cycle (C9, C10, C11, C12, and C13) are situated nearly in one plane with a maximum deviation of $-0.011(3) \AA$ for C13. Cycloocta-1,5-diene adopts the expected boat conformation. The displacements of the C3, C4, C7 and C8 atoms from the $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 5$ and C 6 plane are $1.228(3) \AA, 0.952(3) \AA, 1.220(3) \AA$ and $0.974(3) \AA$, respectively. The dihedral angle between the $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 5, \mathrm{C} 6$ plane and the plane of the cp cycle is $178 \cdot 7(1)^{\circ}$. The

* Lists of structure factors, anisotropic thermal parameters, H-atom positions, bond distances and angles involving H atoms and least-squares plane details are available on request from the author (B.K.).
bond distances to the cobalt, in the range of $2.010-2.025 \AA$, are relatively short. Compared, for example to $\left[\mathrm{Fe}(\operatorname{cod})(\mathrm{CO})_{3}\right]\left(\right.$ ref. ${ }^{6}$,) where the olefin-metal distance lies between $2 \cdot 16$ and $2 \cdot 1.8 \AA$, the force constant of the Co-olefin bond must be stronger. In $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ the analogous bond length is $2 \cdot 11 \AA\left(\mathrm{ref}^{7}\right)$, also clearly longer than in $[\mathrm{Co}(\mathrm{cp})(\operatorname{cod})]$. The situation is a somewhat different in the paramagnetic 17--electron species $[\mathrm{Fe}(\mathrm{cp})(\mathrm{cod})]\left(\right.$ ref. $\left.{ }^{8}\right)$, where the Fe atom tries to satisfy its electron deficiency by shortening the corresponding bond lengths, so that a metal-olefin distances of about $2.04 \AA$ results.

The relatively strong interaction of the π-orbitals of the diolefin with the $\mathrm{cpCo}-$ -fragment can also be verified by looking at the elongation of the $\mathrm{C}=\mathrm{C}$ bond. The value for this bond length is $1.334 \AA$ in the uncoordinated cycloocta-1,5-diene ${ }^{9}$ and 1.411 and $1.412 \AA$ respectively, in $[(\mathrm{Co}(\mathrm{cp})(\mathrm{cod})]$. The analogous distances in $\left[\mathrm{Ni}(\mathrm{cod})_{2}\right]$ are between 1.38 and $1.39 \AA$, and $1.37 \AA$ in $\left[\mathrm{Fe}(\operatorname{cod})(\mathrm{CO})_{3}\right]$. The bond angles are quite normal and are more similar to those found in $[\mathrm{Fe}(\mathrm{cp})(\mathrm{cod})]$ than to those in $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$.

An examination of intermolecular distances between non-hydrogen atoms shows that the crystal is stabilized by van der Waals interactions only (Fig. 2); the shortest distances are $\mathrm{C} 10 \mathrm{C} 13^{\mathrm{i}}=3 \cdot 578(4) \AA$ and $\mathrm{C} 10 \mathrm{C} 1^{\mathrm{ii}}=3 \cdot 578(3) \AA$, where i : $1-x, y-1 / 2,1 / 2-z$ and ii: $x, y-1, z$.

Fig. 1
View of the $[\mathrm{Co}(\mathrm{cp})(\operatorname{cod})]$ molecule with atom numbering. The displacement ellipsoids are drawn at the 50% probability level

Fig. 2
The crystal packing projected into the $X Z$ plane

Table I
The final coordinates for non-hydrogen atoms $\left(.10^{4}\right)$ and their isotropic equivalent displacement parameters $\left(.10^{4}\right)$ defined as $U_{\text {eq }}=(1 / 3)\left[U_{22}+1 / \sin ^{2} \beta\left(U_{11}+U_{33}+2 U_{13} \cos \beta\right)\right]$

Atom	x	y	z	$U_{\text {eq }}, \AA^{2}$
Co	$2898 \cdot 6(2)$	3 206-4(4)	$2943 \cdot 4(2)$	264(2)
C1	2 979(2)	5 866(3)	3 328(2)	376(13)
C2	2 497(2)	5 595(3)	2 105(2)	377(13)
C3	$1292(2)$	$5825(4)$	1 602(3)	516(16)
C4	697(2)	4 048(4)	$1614(3)$	489(15)
C5	$1292(2)$	2 777(4)	2 555(3)	399(14)
C6	1 650(2)	3 212(3)	3 780(3)	398(14)
C7	$1454(2)$	5 049(4)	4 297(2)	491(16)
C8	$2361(3)$	6 377(4)	4 256(3)	489(16)
C9	3 680(2)	1 665(3)	$1853(3)$	402(15)
C10	3 287(2)	533(3)	2 639(2)	423(14)
C11	3 792(2)	$1006(4)$	$3832(3)$	510(16)
C12	4 484(2)	2 439(5)	$3783(3)$	551(17)
C13	4400 (2)	2 871(4)	$2553(3)$	478(16)

Table II
Interatomic distances (in \AA) and angles (in ')

Atoms	Value	Atoms	Value
		Distances	
Co-C1	$2 \cdot 011(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1 \cdot 516(4)$
$\mathrm{Co}-\mathrm{C} 2$	$2 \cdot 020(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1 \cdot 500(4)$
$\mathrm{Co}-\mathrm{C} 5$	$2 \cdot 010(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1 \cdot 411(4)$
$\mathrm{Co}-\mathrm{C} 6$	$2 \cdot 025(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1 \cdot 524(4)$
$\mathrm{Co}-\mathrm{C} 9$	$2 \cdot 095(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1 \cdot 521(4)$
$\mathrm{Co}-\mathrm{C} 10$	$2 \cdot 084(3)$	$\mathrm{C} 1-\mathrm{C} 8$	$1 \cdot 504(5)$
$\mathrm{Co}-\mathrm{C} 11$	$2 \cdot 109(3)$	$\mathrm{C}-\mathrm{C} 10$	$1 \cdot 399(4)$
$\mathrm{Co}-\mathrm{C} 12$	$2 \cdot 102(3)$	$\mathrm{C} 11-\mathrm{C} 112$	$1 \cdot 417(4)$
$\mathrm{Co}-\mathrm{C} 13$	$2 \cdot 064(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1 \cdot 384(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1 \cdot 412(4)$	$\mathrm{C} 9-\mathrm{C} 13$	$1 \cdot 425(5)$
$\mathrm{C}-\mathrm{C} 3$	$1 \cdot 516(4)$		$1 \cdot 394(4)$

Table II
(Continued)

$\mathrm{C} 6-\mathrm{Co}-\mathrm{C} 5$	$40 \cdot 9(1)$
$\mathrm{C} 1-\mathrm{Co}-\mathrm{C} 5$	$101 \cdot 7(1)$
$\mathrm{C} 1-\mathrm{Co}-\mathrm{C} 6$	$84 \cdot 4(1)$
$\mathrm{C} 2-\mathrm{Co}-\mathrm{C} 5$	$84 \cdot 1(1)$
$\mathrm{C} 2-\mathrm{Co}-\mathrm{C} 6$	$94 \cdot 7(1)$
$\mathrm{C} 2-\mathrm{Co}-\mathrm{C} 1$	$41 \cdot 0(1)$
$\mathrm{C} 10-\mathrm{Co}-\mathrm{C} 5$	$94 \cdot 5(1)$
$\mathrm{C} 10-\mathrm{Co}-\mathrm{C} 6$	$108 \cdot 7(1)$
$\mathrm{C} 10-\mathrm{Co}-\mathrm{C} 1$	$163 \cdot 8(1)$
$\mathrm{C} 10-\mathrm{Co}-\mathrm{C} 2$	$142 \cdot 5(1)$
$\mathrm{C} 11-\mathrm{Co}-\mathrm{C} 5$	$113 \cdot 2(1)$
$\mathrm{C} 11-\mathrm{Co}-\mathrm{C} 6$	$99 \cdot 5(1)$
$\mathrm{C} 11-\mathrm{Co}-\mathrm{C} 1$	$130 \cdot 7(1)$
$\mathrm{C} 11-\mathrm{Co}-\mathrm{C} 2$	$162 \cdot 7(1)$
$\mathrm{C} 11-\mathrm{Co}-\mathrm{C} 10$	$39 \cdot 5(1)$
$\mathrm{C} 12-\mathrm{Co}-\mathrm{C} 5$	$151 \cdot 2(2)$
$\mathrm{C} 12-\mathrm{Co}-\mathrm{C} 6$	$123 \cdot 5(1)$
$\mathrm{C} 12-\mathrm{Co}-\mathrm{C} 1$	$99 \cdot 6(1)$
$\mathrm{C} 12-\mathrm{Co}-\mathrm{C} 2$	$124 \cdot 5(1)$
$\mathrm{C} 12-\mathrm{Co}-\mathrm{C} 10$	$65 \cdot 4(1)$
$\mathrm{C} 12-\mathrm{Co}-\mathrm{C} 11$	$38 \cdot 4(1)$
$\mathrm{C} 13-\mathrm{Co}-\mathrm{C} 5$	$150 \cdot 5(1)$
$\mathrm{C} 13-\mathrm{Co}-\mathrm{C} 6$	$163 \cdot 4(1)$
$\mathrm{C} 13-\mathrm{Co}-\mathrm{C} 1$	$99 \cdot 2(1)$
$\mathrm{C} 13-\mathrm{Co}-\mathrm{C} 2$	$98 \cdot 6(1)$
$\mathrm{C} 13-\mathrm{Co}-\mathrm{C} 10$	$65 \cdot 6(1)$
$\mathrm{C} 13-\mathrm{Co}-\mathrm{C} 11$	$65 \cdot 8(1)$
$\mathrm{C} 13-\mathrm{Co}-\mathrm{C} 12$	$40 \cdot 0(1)$
$\mathrm{C} 9-\mathrm{Co}-\mathrm{C} 5$	$111 \cdot 9(1)$
$\mathrm{C} 9-\mathrm{Co}-\mathrm{C} 6$	$143 \cdot 7(1)$
$\mathrm{C} 9-\mathrm{Co}-\mathrm{C} 1$	$130 \cdot 8(1)$
$\mathrm{C} 9-\mathrm{Co}-\mathrm{C} 2$	$107 \cdot 1(1)$
$\mathrm{C} 9-\mathrm{Co}-\mathrm{C} 10$	$39 \cdot 1(1)$

Angles

$\mathrm{C} 9-\mathrm{C}-\mathrm{C} 11$	$66 \cdot 0(1)$
$\mathrm{C} 9-\mathrm{Co}-\mathrm{C} 12$	$66 \cdot 1(1)$
$\mathrm{C} 9-\mathrm{Co}-\mathrm{C} 13$	$39 \cdot 2(1)$
$\mathrm{C}-\mathrm{C} 9-\mathrm{C} 10$	$70 \cdot 0(2)$
$\mathrm{C}-\mathrm{C} 9-\mathrm{C} 13$	$69 \cdot 2(2)$
$\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10$	$107 \cdot 1(2)$
$\mathrm{Co}-\mathrm{C} 13-\mathrm{C} 9$	$71 \cdot 6(2)$
$\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 12$	$108 \cdot 7(3)$
$\mathrm{Co}-\mathrm{C} 13-\mathrm{C} 3$	$71 \cdot 4(2)$
$\mathrm{Co}-\mathrm{C} 12-\mathrm{C} 13$	$68 \cdot 6(2)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$107 \cdot 6(3)$
$\mathrm{C}-\mathrm{C} 12-\mathrm{C} 11$	$71 \cdot 1(2)$
$\mathrm{Co}-\mathrm{C} 11-\mathrm{C} 12$	$70 \cdot 6(2)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$107 \cdot 7(3)$
$\mathrm{Co}-\mathrm{C} 12-\mathrm{C} 10$	$69 \cdot 3(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$108 \cdot 9(2)$
$\mathrm{Co}-\mathrm{C} 10-\mathrm{C} 11$	$71 \cdot 2(2)$
$\mathrm{Co}-\mathrm{C} 10-\mathrm{C} 9$	$70 \cdot 9(1)$
$\mathrm{Co}-\mathrm{C} 2-\mathrm{C} 3$	$113 \cdot 8(2)$
$\mathrm{Co}-\mathrm{C} 2-\mathrm{C} 1$	$69 \cdot 2(1)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$122 \cdot 5(2)$
$\mathrm{C}-\mathrm{C} 1-\mathrm{C} 2$	$69 \cdot 8(1)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8$	$124 \cdot 0(3)$
$\mathrm{Co}-\mathrm{C} 1-\mathrm{C} 8$	$113 \cdot 0(2)$
$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 7$	$112 \cdot 2(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$111 \cdot 9(2)$
$\mathrm{Co}-\mathrm{C} 6-\mathrm{C} 7$	$113 \cdot 5(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$123 \cdot 0(2)$
$\mathrm{Co}-\mathrm{C} 6-\mathrm{C} 5$	$69 \cdot 0(2)$
$\mathrm{Co}-\mathrm{C} 5-\mathrm{C} 6$	$124 \cdot 8(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$112 \cdot 5(2)$
$\mathrm{Co}-\mathrm{C} 5-\mathrm{C} 3$	$122 \cdot 2(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$111 \cdot 1(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	

REFERENCES

1. King R. B., Treichel P. M., Stone F. G. A.: J. Am. Chem. Soc. 83, 3593 (1961).
2. International Tables for X-ray Crystallography, Vol. IV. Kynoch Press, Birmingham 1974. (Present distributor Kluwer Academic Publishers, Dordrecht).
3. Frenz B. A. and Associated, Inc.: SDP. Structure Determination Package. College Station, Texas 77840 and Enraf-Nonius, Delft 1985.
4. Sheldrick G.: SHELX-76. A Program for Crystal Structure Determination. University of Göttingen, Göttingen 1976.
5. Nardelli M.: PARST. A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis. University of Parma, Parma 1984.
6. Grevels F. H., Jacke J., Klotzbücher W. E., Krüger C., Seevogel K., Tsay Y. H.: Angew. Chem. 99, 960 (1987).
7. Dierks H., Dietrich H.: Z. Kristallogr. 122, 1 (1965).
8. Angermund K., Claus K. H., Goddard R., Krüger C.: Angew. Chem. 97, 241 (1985).
9. Allinger N. L., Sprague J. T.: Tetrahedron 31, 21 (1975).

Translated by the author (B.K.).

